Cold inducible RNA binding protein upregulation in pituitary corticotroph adenoma induces corticotroph cell proliferation via Erk signaling pathway

نویسندگان

  • Fangfang Jian
  • Yufan Chen
  • Guang Ning
  • Wei Fu
  • Hao Tang
  • Xiao Chen
  • Yao Zhao
  • Lili Zheng
  • Sijian Pan
  • Weiqing Wang
  • Liuguan Bian
  • Qingfang Sun
چکیده

Cushing's disease is caused by pituitary corticotroph adenoma, and the pathogenesis of it has remained obscure. Here, we showed that cold inducible RNA binding protein (CIRP) was markedly elevated in corticotroph tumors. Forced overexpression of CIRP in murine AtT20 pituitary corticotroph cell line increased corticotroph precursor hormone proopiomelanocortin (POMC) transcription, ACTH secretion and cellular proliferation. In vivo, CIRP overexpression promotes murine corticotroph tumor growth and enhances ACTH production. Mechanistically, we show that CIRP could promote AtT20 cells proliferation by inducing cyclinD1 and decreasing p27 expression via Erk1/2 signaling pathway. Clinically, CIRP overexpression is significantly correlated with Cushing's disease recurrence. CIRP appears to play a critical tumorigenesis function in Cushing's disease and its expression might be a useful biomarker for tumor recurrence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aphidicolin inhibits cell proliferation via the p53-GADD45β pathway in AtT-20 cells.

Cushing's disease is primarily caused by pituitary corticotroph adenomas, which autonomically secrete adrenocorticotropic hormone (ACTH). ACTH production may be associated with tumor cell proliferation; however, the effects of cell cycle progression on ACTH production and cell proliferation are little known in corticotroph tumor cells. A DNA polymerase inhibitor, aphidicolin, arrests cells at t...

متن کامل

EGFR Induces E2F1-Mediated Corticotroph Tumorigenesis

The epidermal growth factor receptor (EGFR), expressed in adrenocorticotrophic hormone (ACTH)-secreting pituitary adenomas causing Cushing disease, regulates ACTH production and corticotroph proliferation. To elucidate the utility of EGFR as a therapeutic target for Cushing disease, we generated transgenic (Tg) mice with corticotroph-specific human EGFR expression (corti-EGFR-Tg) using a newly ...

متن کامل

Inhibitory effects of a selective Jak2 inhibitor on adrenocorticotropic hormone production and proliferation of corticotroph tumor AtT20 cells

PURPOSE The primary cause of Cushing's disease is adrenocorticotropic hormone (ACTH)-producing pituitary adenomas. EGFR signaling induces POMC mRNA-transcript levels and ACTH secretion from corticotroph tumors. The Jak-STAT pathway is located downstream of EGFR signaling; therefore, a Jak2 inhibitor could be an effective therapy for EGFR-related tumors. In this study, we determined the effect o...

متن کامل

USP8 mutation in Cushing's disease

Pituitary corticotroph adenomas, also referred to as Cushing’s disease (CD), secret large amounts of adrenocorticotropic hormone (ACTH), resulting in excess glucocorticoids and hypercortisolism [1]. The diagnosis of hypercortisolism is complicate and sometimes difficult because its clinical features overlap with other common diseases. Currently, 65-90% of patients achieve complete or partial re...

متن کامل

Targeting the ERK pathway for the treatment of Cushing's disease

We recently demonstrated that the orphan nuclear receptor testicular receptor 4 (TR4) is a potent regulator of corticotroph tumor growth and hormone secretion. The Ras/Raf/MEK/ERK pathway is commonly overactivated in human tumors and we have demonstrated that corticotroph tumor TR4 is activated by ERK1/2-mediated phosphorylation. We evaluated effects of MEK-162, a selective, non-ATP-competitive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016